Royal Netherlans Academy of Arts and Sciences, December 1-2, 2015 Amsterdam

A Semantic Engine for Grey Literature Retrieval in the Oceanography Domain

Sara Goggi, Gabriella Pardelli, Roberto Bartolini, Francesca Frontini, Monica Monachini

CNR, Istituto di Linguistica Computazionale, "Antonio Zampolli", Italy Giuseppe Manzella

ETTsolutions Genova Italy Maurizio De Mattei, Franco Bustaffa DP2000 La Spezia, Italy

Introduction

The MAPS (Marine Planning and Service Platform) project is a development of the Marine project (Ricerca) Industriale e Sviluppo Sperimentale Regione Liguria (2007-2013)) that aims to build a computer platform to support Operative Oceanographers in their activities.

ANALYSIS, EXTRACTION, INDEXING SYSTEM

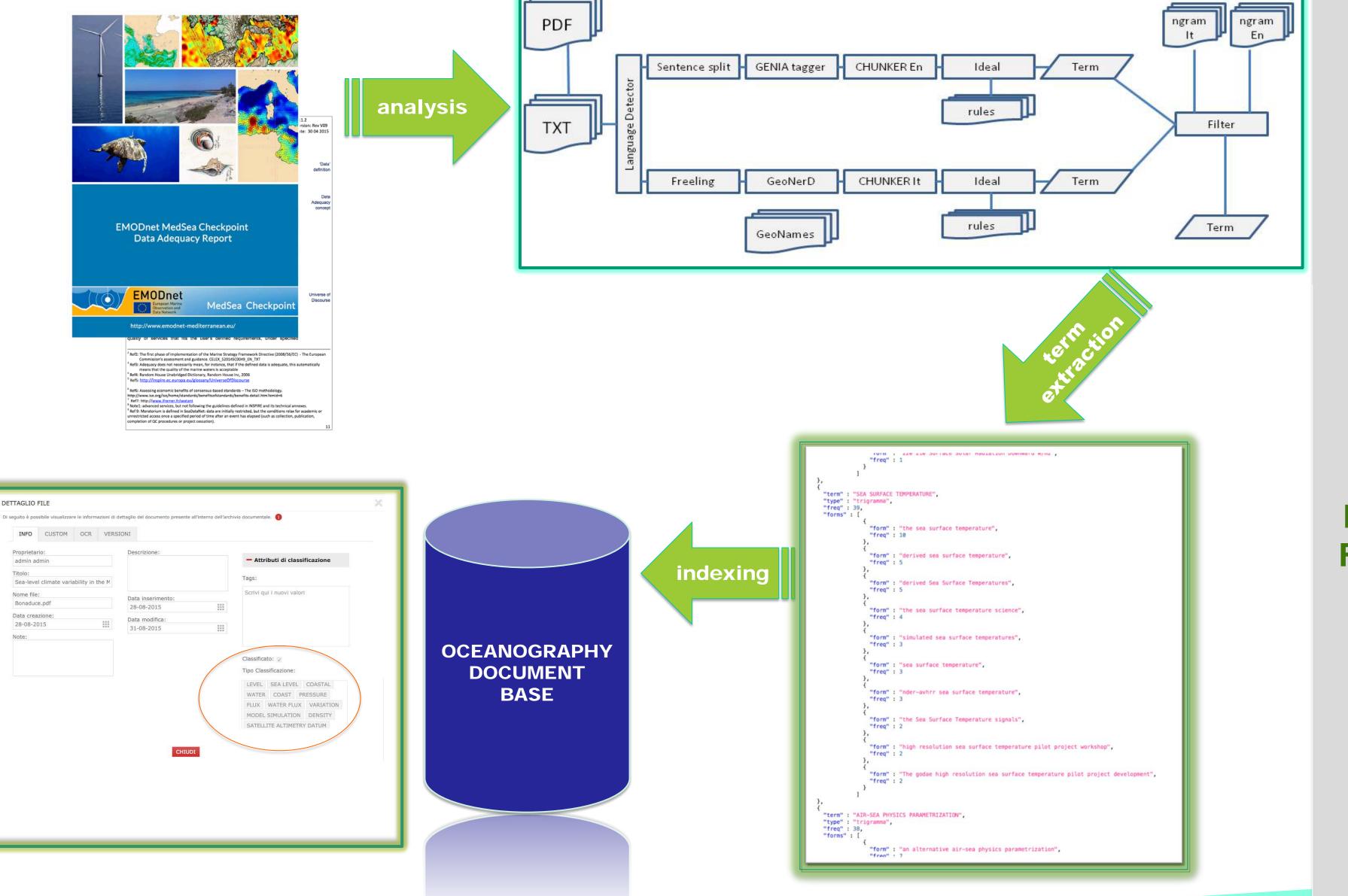
Marine Planning and Service Platform (MAPS)

PROGRAMMA OPERATIVO REGIONALE **POR-FESR** (2007 - 2013)Asse 1 Innovazione e Competitività

Community and Requirements

Operative Oceanography is the branch of marine research which deals with the development of integrated systems for examining and modeling the ocean monitoring and forecast. Experts need access

to real-time data on the state of the sea such as forecasts on temperatures, streams, tides and the relevant scientific literature. This finds application in many areas, ranging from civilian and military safety to protection of


> usin obta

> acce hea

> > formulation

rological stations, that the incoming solar radiation is systematically overes

for the 30 years period which they considered (1964-1994), by the adopted

PROGRAMME COMMITTEE

Monica Monachini Francesca Frontini Roberto Bartolini Gabriella Pardelli Sara Goggi

> ILC-CNR, Pisa, Italy

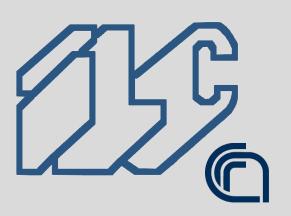
Franco Bustaffa

off-shore and coastal **QUERY, DOCUMENT RETRIEVAL, EVALUATION** infrastructures.

ter heat balance an	d solar radiation					
	C.BOX CON THE CLOUD	Notions about water heat balance a Trovato 1 docum		econdi		
	Esplora Cloud Ricerca avanzata Ricerca ricorsiva Radice Pubblicazioni PDF	Filtri: Ricerca in Radice* × Seleziona tutto	Azioni multiple	ater heat bala	 Risultati per pagina 10 	diation.
		C Pettenuzzo Score: 1).pdf	Data: 06/08/2015		Proprietario: admin admin
other attempt, Castellari et al. [1998] intere g the atmospheric NWP analyses and foun in a negative surface heat balance for the N	nd the most appropriate ones in order to					
ptable water balance. They estimated a 19						
balance, and so again the Mediterranean he					_	
ou [2003] demonstrated, using ground trut	th observations at several coastal					

The radiative part of the heat balance is composed of solar shortwave radiation and

Documento ⁴		Q15		Q2 ⁵		Q35		Q45		Q55		Q6 ⁵		Q75		Q8 5		Q95	
Documento		S	R	S	R	S	R	S	R	S	R	S	R	S	R	S	R	S	
D1		-	•	х	х	x	х	6		-		•	-	7	•	7	•	-	
D2		x	X	x	x	7	-	7	-	7	•	-	x	х	-	6	-	-	
D3		-	•	7	-	-	-	7	х	х		•		6	4	-	•		
D4		X	•	X	х	X	×	7		7	•		•	х	•	7	•		
D5	•	6	X	X	X	7	-		х	÷			X	X		7	-	•	
D6	ч.	•	•	7	÷	-	X	÷	-	-	-	•	•	6	1	X	•	•	
D7		•	•	7			×	•			•			7	X	x	x	X	
D8		8		7	•	-	•	÷	•	•	X	x	X	х		7		•	
D9		-		-	4	-	÷	7		÷				7	+	6	x	X	
D10		•	·	•		+	÷		•	•	X	x	X	7	•	7	*	•	
D11			•	÷	•	-	÷	7	÷	÷		•	•	-	•		-	•	
D12	э.	•		•	*	÷	4	7	÷	-	•	•	•		.*)	۰.	÷		
D13	>	7			۰.	\cdot	÷	÷		•			•			7			
D14	•	•	•	•	•	7	-	7	-		•	7	•	-	-	•	•	•	
D15	4	-	-	-	-	-	ч.	×	-	-	-	•	•	-	-	×.	÷	-	
Rilevanti (n_R)		2	1	2	1	4	:	2	1	2	:	2	;	2		4)	1	
ilevanti selezionati (n _{RS})		2	;	2	1	2	()	(D	3	2	3	2	3	3	13	1	
Selezionati (n_S)	2			4		2	(0		0		2		2		4		2	
Precision ($p = \frac{n_{RS}}{n_S}$)	1,	1,00 0,50		50	1,00		0,00		0,00		1,00		1,00		0,75		0,50		


Maurizio De Mattei

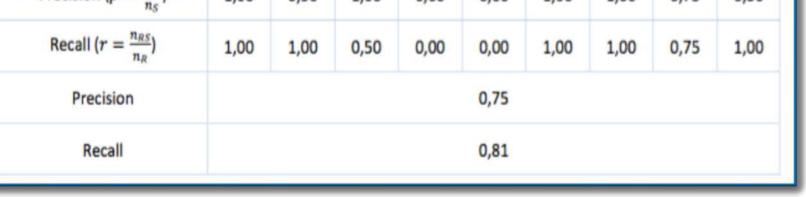
DP2000, LaSpezia, Italy

Giuseppe Manzella

ETTsolutions, Genova, Italy

PARTNERS

National Research Council www.ilc.cnr.it



http://www.dp2000.it/

	Many other techniques used to correct flux fields in different regions of the	longwave radiation.		
	ocean can be found in literature, and a detailed review is included in the introc	In Figure 1.1 it is shown that about 50% of inciden	t solar radiation reaches the	
1	of Large and Vesser [2009]. They include assimilation of accord observations [St	Earth's surface and, on average, about 15% of this if		
		the ocean most of the incident solar radiation is abso		
		albedo (defined as the percentage of incoming radiatio	the flux of heat from the ocean's	s surface to the atmosphere thr
		on the angle at which the Sun's radiation hits the surf	vection that is not associated w	
		tions to this apparently simple picture. Solar radiatio	sensible heat. There will also be	
			sensible near. There will also be	, an exchange of the molecules

1.1.1.1 The radiative part of the heat balar

Chapter 1
flux of heat from the ocean's surface to the atmosphere through conduction and con-
tion that is not associated with phase changes of water . This energy is known as
sible heat. There will also be an exchange of the molecules themselves, generally re-
ting in net evaporation, and therefore transfer of latent heat, from the water surface to
atmosphere. Conversely, freshwater is added to the ocean by means of precipitations
The components of the heat balance (divided in radiative and turbulent parts), which
schematically represented in Figure 1.1, are discussed in detail below along with

Contact: Sara Goggi - sara.goggi@ilc.cnr.it - phone: +39 050 315283