

Patterns of Research Output Produced by Scholarly Communities in Korea

December, 5th – 6th, 2005

H. K. Hwang, H. Y. Choi, T. S. Seo, Korea Institute of Science and Technology Information S. S. Lee, Pusan National University

- 1. Introduction
- 2. Related works
- 3. Definition of research output
- 4. Survey results and data analysis
- 5. Conclusion
- 6. Direction for future study

11/28/18 [2/25]

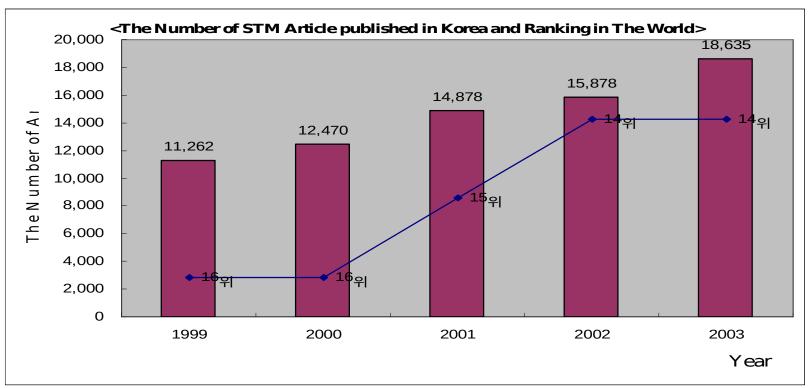
- To Develop an open access-based knowledge/information flow model
- To Further seek a way to facilitate the communication process within and among scholarly communities in Korea
 - A. Because open access has different characteristics according to the different academic fields or local fields.
 - In Korea,
 - ✓ Prefer to subscribe and contribute a research output to a foreign journal
- Focus of presentation
 - A. The Number of production by types of research outputs
 - B. Comparison of output patterns of engineering and science fields
 - C. Motive of publishing
 - D. Copyright holder
 - E. Intention to open-use of research output
 - F. Preserving research output
 - G. Trusted digital archive

11/28/18 [3/25]

The Status of STM domestic articles published on SCI(E) journals

A. 52 fields are taking the top 20th rank

Subject	articles in Korean	The Num. of articles in the world	Rate (Top 20 th in the world)
Engineering and Computer	5,503	106,980	5.14%
Life Science	2,960	141,939	2.09%
Physics, Chemistry, Earth Science	8,382	242,474	3.46%
Medical Science	2,453	144,008	1.70%
Agriculture, Biology, Environment Science	418	13,504	3.10%
Total	19,716	648,905	

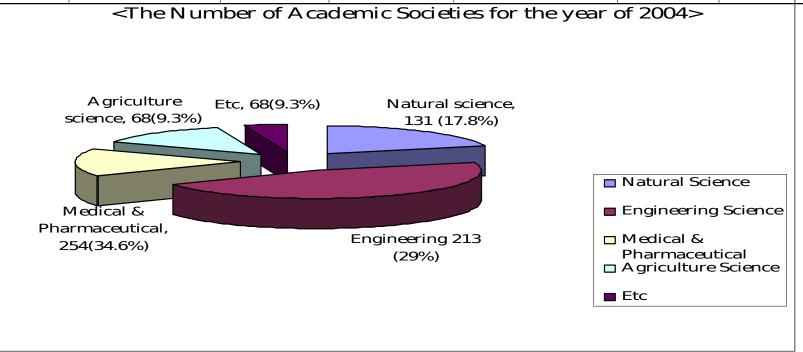

11/28/18 [4/25]

The Number of STM articles increased 17.4% in Korea

A. Analysis on the ISI database:

a.11,262 articles in the year of 1999 taking the 16^{th} rank in the world; 12,470 in the year of 2000 ranking 16^{th} ; 14,878 in 2001 ranking 15^{th} ; 18,635 in 2003 ranking 14^{th}

11,262 (1999) (2003)



<Source : Analysis on the Research Achievements in Science & Technology Fields Using SCI Database. KAIST. 2004.>

11/28/18 [5/25]

The Number of STM academic society in Korea

	Agriculture	Medical & Pharm	Natural	Engineering	Etc	Total
Societ _y	68	254	131	213	68	734

<source : Statistics of Academic Society for the year of 2004. Korea Research F
oundation. http://www.krf.or.kr>

11/28/18 [6/25]

2. Related Works

- JISC Author Study (Key Perspectives Ltd. 2004, 2005)
 - A. Study of authors who had published their work in open access journals, and compared and contrasted non-open access author
 - B. Study of Author self-archiving behavior
- Targeting Academic Research for Dissemination and Disclosure: TARDIs Project (Hey, Jessie M.N. 2004)
 - A. To build a sustainable multidisciplinary institutional archive of e-Prints to le verage the research created within Southampton University
- University of Rochester IMLS Grant (2004)
 - A. Faculty members' need in connection with their research activities.
 - B. Grey Literature in Different Disciplines
- Construction of the SciTech Knowledge Sharing System based o n Open Access (S.Lee, H. Hwang, H.Kim, K.Joung, M. Seol 2004)
 - A. Model of Korea national open access portal as an online public library for re search output

11/28/18 [7/25]

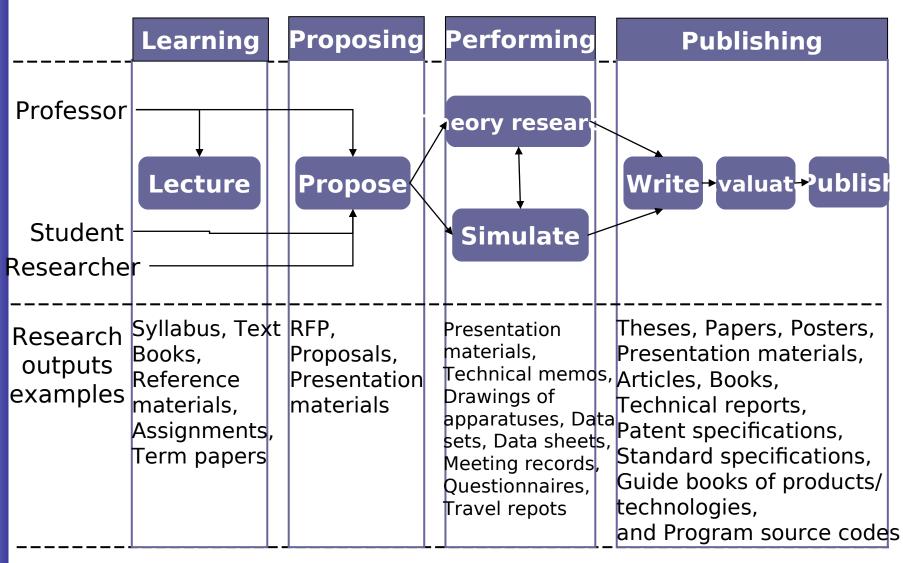
3. Definition of Research Output

Definition of research output

A. All types of information resources produced from the scientific research activities, which can be divided into four phases: learning, proposing, performing and publishing.

a. Performing phase

 presentation materials, technical memos, drawings of apparatuses, data sets, meeting records, questionnaires, data sheets, and travel reports


b. Publishing phase

 theses, papers, posters, articles, books, technical reports, patent specifications as well as standard specifications, guide books of products and technologies, and program source codes

11/28/18 [8/25]

3. Definition of Research Output

Research output by research phases

11/28/18 [9/25]

Overview of survey

- A. Method
 - a. Online and Offline survey using e-mail and partly regular mail
 - b. Target: 4,792 KISTI individual member
 - c. Period : Aug 17 Aug 24, 2005 (1st), Aug 25-Sept. 16 (2nd)
 - d. Total number of Respondents: 250 (only 5 % response rate among the recipients)

Composition of the respondents

Classification	Types	Occurrences	Rates (%)
Job	Academics	159	63.6
	Industry	87	34.8
	Others	4	1.6
Major of final degree	Engineering	148	59.2
	Science	59	23.6
	Medicine	9	3.6
	Humanities/Social	23	9.2
	Others	11	4.4

11/28/18 [10/25]

- The number of production by types of research ou tputs
 - A. The most popular output type:
 - a. Technical report, presentation material
 - B. Many Korea researchers are involved in projects sponsored by government or other funding organizations
 - C. The most popular output format:
 - a. Word processor (HWP, MS Word, PDF, PPT, RTF, XLS, Txt, LaTeX)
 - b.Multi-media (MPEG/MPG, WAV, AVI, MOV)
 - c. Web page (HTM/HTML, XML, ASP, PHP, JSP, DHTML)
 - d.Image (JPG, GIF, BMP, TIF, Postscript, EPS)
 - e.Database (RDB, NDB, OODB, ORDB)
 - f. Program (C/C++, Visual Basic, Java, FOR)
 - g.Design, Modeling, Visual (CAD/CAM, GIS, Molfiles)

11/28/18 [11/25]

Research phases	Types of Research Outputs	Producing more than 1 within 3	Rates (%)
Publishing	Technical reports	163	65.2
Publishing/Performing/ Proposing	Presentation materials	158	63.2
Publishing	Peer reviewed papers	141	56.4
Publishing	Conference papers	129	51.6
Proposing	Proposals	125	50.0
Publishing	Patents	108	43.2
Publishing	Conference posters	104	41.6
Performing	Experiment Materials	100	40
Performing	Questionnaires	67	26.8
Publishing	Books	66	26.4
Publishing	Theses	60	24.0
Performing	Drawings of apparatus	59	23.6
Performing	Statistics Data	54	21.6
Performing	Experiment Equipment and System Explanation	50	20
Performing	Data sheets	45	18.0
Publishing	Program source codes	45	18.0
Performing	Software	36	14.4
Performing	Multimedia	36	14.4
17/28/18 ing	Data set	34	[12/25]6

- Comparison of output patterns of engineering and science
 - A. The total rates of peer-reviewed and conference papers in engineering fields produce more than those in science fields
 - B. Science-related fields are more productive in terms of conference posters, presentation materials, and experimental materials

	Patterns of Research Output
Engineering (Mechanical and Metal)	Peer reviewed paper, Conference paper, Patent, Technical report and Proposal
Science	Conference Poster, Presentation Material, Experimental Material
Chemistry)	

11/28/18 [13/25]

Type of outputs	Fields		P	roduc	ing wi	thin 3 yrs.	Rate (%)
		1-3	4-6	7-9	10>	Total/no. respondents	
Peer reviewed	Eng.	16	6	4	3	29/42	69.00
papers	Sci.	1	5	5	6	17/29	58.60
Conference	Eng.	11	8	2	4	25/42	59.50
papers	Sci.	3	3	6	3	15/29	51.70
Conference	Eng.	8	3	1	2	14/42	33.70
posters	Sci.	1	7	2	4	14/29	48.30
Patents/Utility	Eng.	10	4	3	4	21/42	50.00
Model	Sci.	6	4	1	1	12/29	41.40
Technical reports	Eng.	15	6	3	2	26/42	61.90
	Sci.	7	3	5	2	17/29	58.60
Presentation	Eng.	8	2	10	2	22/42	52.40
Materials	Sci.	4	2	10	2	18/29	62.10
Proposals	Eng.	10	3	4	3	20/42	47.60
	Sci.	3	1	3	2	9/29	31.00
Experiment	Eng.	7	3	4	4	18/42	42.90
Materials	Sci.	3	2	7	3	15/29	51.70

11/28/18 [14/25]

Motive for Publishing

A. Question

a. In general, What are your objectives when publishing your research output?

Ranking	Motive of Publishing	Rate(%)
1	Requirements of their affiliations	65.2%
2	For their academic reputation	61.2%
3	To communicate results to my peers	52.0%
4	To obtain the direct financial reward	19.2%

11/28/18 [15/25]

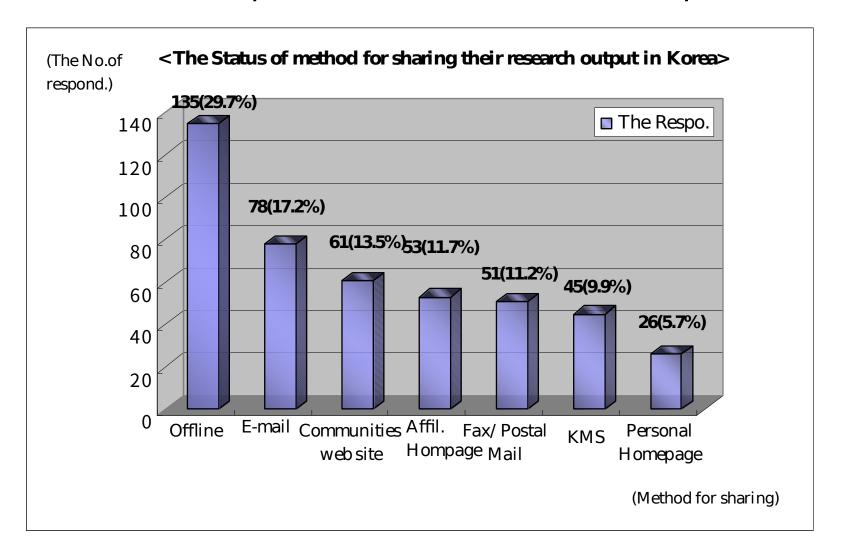
Copyright Holder

- A. Question
 - a. Who do you think is the most desirable copyright holder for your research output that published formal publishing channel. Please check the priority.

Entity	1st	2nd	3rd	4th	others
Researcher	170(68.0 %)) 50 (20.0 %)	20(8.0%)	4(1.6%)	6(2.4%)
Organizati on	60(24.0%	116(46.4 %)	53(21.2%	9(3.6%)	12(1.2%
Sponsor	23(9.2%)	67(26.8%)	126(50.4(%)	9(3.6%)) 25(1.0%)
Publisher	5(2.0%)	8(3.2%)	23(9.2%)	154(61.6 %)	60(24.0 %)

11/28/18 [16/25]

- Intention to Open Access of Research Output
 - A. Question
 - a. Do you have a intention to open your research output to the public domain for the public purpose
 - Are you going to allow the non-profit use of your research output if researcher's copyright is stated clearly.
 - Are you going to allow modifications of your research outputs if researcher's copyright is stated clearly.


					Respond	Rate
	T		Non-	Allow	203	91.9%
	Respon	Rate	profit Use	Do not allow	11	4.9%
	d.		030	Allow	7	3.2%
Open	221	88.4 %		commercial Use as well	-	, , ,
Close	29	11.6		Sub-Total	221	100%
		%	Modifi-	Allow	140	63.3%
			cation	Do not Allow	81	36.7%
11/20/10				Sub-Total	221	100%

11/28/18

- Intention to Open Access of Research Output
 - A. .
 - B. Do you think it is beneficial to share your own research output with colleagues before publishing formally.
 - √ 75% of Korean Researchers think that sharing their research outputs with colleagues before publication would be HELPFUL
 - C. By which methods, do you share your research output with research colleagues.
 - ✓ The way of sharing Korea researchers prefer is
 - Off-line: research club, lab seminar (29.7%)
 - E-mail (17.2%)
 - Communities website (13.5%)
 - Affiliate's Homepages (11.7%)
 - printed material via fax or postal mail (11.2%)
 - In-company intranets (knowledge management system) (9.9%)
 - Online sharing including personal homepages (5.7%)

11/28/18 [18/25]

Intention to open access of research output

11/28/18 [19/25]

- Preserving research output
 - A. Question
 - a. Where do you store your research output
 - b. How long do you think your research output that stored somewhere are searched, used, and stored.

Authors' preservation method	The Num. of	Rate (%)
	Respondent	
Personal computers	236	48.3%
CD-ROM	103	21.1%
USB memory devices	68	13.9%
In-company intranet	32	6.5%
FTP Server	28	5.7%
Floppy diskette	12	2.5%
Commercial web Hard	10	2.0%

Authors' expectations on period of preservation	The Num. of Respondent	Rate (%)
Less than 1 year	9	3.6%
1 - 3 years	69	27.6%
3-5 years	70	28%
5-10 years	52	20.8%
over 10 year	49	19.6%
none	1	0.4%

- The lack of Institutional repository culture
- Preservation is individual researcher 's responsibility

11/28/18 [20/25]

- Trusted digital archive
 - A. Do you have intention to submit it if trusted institution/organization guarantees you to store and use your research output for long periods.
 - √ 80.0% of Korean researchers want institutional repositories for reserving some of their research outputs
 - B. If trusted digital archive is built, who do you think is desirable to manage and operate it.
 - ✓ Korean researchers prefer their own or governmental organizations

Intention to submit output	Respondents (%)
Willing to submit all their output	58(23.2%)
Submit except very important output	142(56.8%)
I don't have	13 (5.2%)
It's depend on situation	37 (14.8%)

Candidate Authorities of	Respon.(%)
TDR	
Organization that employs researcher	99 (39.6%)
Governmental organization	8 2 (34 .0%)
Researcher	35(14.0%)
Community researcher participate	27(10.8%)
Others	2(0.8%)
No Response	2(0.8%)

11/28/18 [21/25]

5. Conclusion

- Types of research output
 - A. The most common output type among Korean researchers was found to be technical reports and the next common was found to be s presentation material
 - B. Researchers in engineering field produce more than those in science field in case of ;
 - peer reviewed papers, conference papers, patents, technical reports, and proposals
 - C. Science researchers produce more
 - Conference posters, presentation materials, and experiment materials
 - D. However, in terms of both peer-reviewed and conference papers,
 - Science researchers were dominant with respect to output per researcher
- Publishing objectives
 - Main reason for publishing their research output was found to be that it was a requirement of their affiliations.
- Awareness regarding copyrights
 - The first copyright holders of researcher's outputs should be themselves and the organizations that employ them.

11/28/18 [22/25]

5. Conclusion

Information sharing

- A. Most Korean researchers think that sharing their research outputs with colleagues before publishing would be helpful
- B. The preferred method of sharing for Korea researchers is off-line.
 - Diverse online sharing tools are also used, but the rates are at very low levels compared to the rates of other countries

Preservation of information

 Korean researchers preserve their research outputs mainly on the hard-disc memory in their personal computers (48.3%)

Trusted-digital archive

- A. Many Korean researchers want institutional repositories for reserving some of their research outputs
- B. Korean researchers prefer their own or governmental organizations over other bodies as an authority of a trusted-digital archive.

11/28/18 [23/25]

6. Directions for future study

- This is primarily an initial study to tap into the possibility of developing an open access archive in the Korea scholarly environment especially in the science and engineering fields
- A more specific study can follow with an aim to disco ver these same possibilities in more specific academic fields
 - Nano-technology, IT Technology, Bio-technology as well as o thers.

11/28/18 [24/25]

Reference

- Alma Swan and Sheridan Brown (2005), Open Access Self-Archiving: An Author Study, Key Perspectives, UK.
- ALPSP 1999, What Authors Want: The ALPSP Research Study on the Motivations and Concer ns of Contributors to Learned Journals. West Sussex, U.K.: Association of Learned and Profe ssional Society Publishers. Quoted in: Gibbons, Susan (2004), Establishing an Institutional Repository. Library Technology Reports, 40(4).
- Barton, M.R. and Julie Harford Walker. 2002. MIT Libraries' DSpace Business Plan Project: Final Report to the Andrew W. Mellon Foundation. [cited 2005. 5.10]. http://libraries.mit.edu/dspace-mit/mit/mellon.pdf.
- Charles Oppenheim (2005), "Open Access and the UK Science and Technology Select Committee Report Free for All?", Journal of Librarianship and Information Science, Vol. 37 No. 1, pp. 3-6.
- Gibbons, Susan (2004), Establishing an Institutional Repository. Library Technology Report s, 40(4).
- Hey, Jessie M.N. (2004), "An environmental assessment of research publication activity and related factors impacting the development of an Institutional e-Print Repository at the Univ ersity of Southampton". [cited: 2004.11.1]. http://eprints.soton.ac.uk/archive/00006218/.
- Howard Falk (2004), "Open Access Gains Momentum", The Electronic Library, Vol. 22 No. 6, pp. 527-530.
- Kyoung-Hee Joung (2002), A Study on the Open Access Model for Scholarly Communication, Journal of the Korean Society for Information Management. Vol. 19 No. 4, pp. 383-399.
- Lynne Brindley (2005), "The British Library: its origins, development and future", *Interlendin g & Document Supply*, Vol. 33 No. 2, pp. 76-80.
- Oppenheim, Charles (2003), Project RoMEO Final Report. [cited 2004. 10.2]. http://www.lb.oro.ac.uk/departments/ls/disresearch/romeo/RoMEO-Final-Report.doc.
- University of Rochester IMLS Grant (2004), [cited 2004.10.20]. http://docushare.lib.rochester.edu/docushare/dsweb/Get/Document-13766/IMLSGrantFAQs.html.

11/28/18 [25/25]

Thank you for your attention

11/28/18 [26/25]